

MICRO-428: METROLOGY

WEEK THREE: OPTICAL IMAGE SENSORS

Samuele Bisi

Simone Frasca

Edoardo Charbon

Advanced Quantum Architectures Laboratory (AQUA)

EPFL at Microcity, Neuchâtel, Switzerland

The EPFL logo is a bold, red, sans-serif font where the letters 'E', 'P', 'F', and 'L' are stacked vertically. The 'E' and 'P' are on top of each other, the 'F' is to the right of the 'P', and the 'L' is to the right of the 'F'.

Exercise 1: Dynamic Range

- For a project experiment, we need a [very high dynamic range](#) camera. The camera we are designing has a noise floor of $4.8 e^-$. The required dynamic range is 100 dB, while the maximum operating voltage is 1 V.
- What is the [minimum capacitance](#) we can have for our collector capacitor?

Exercise 1: Dynamic Range

- For a project experiment, we need a **very high dynamic range** camera. The camera we are designing has a noise floor of $4.8 e^-$. The required dynamic range is 100 dB, while the maximum operating voltage is 1 V.
- What is the **minimum capacitance** we can have for our collector capacitor?
- First of all, let us determine what needs to be our **saturation level**:

$$100 \text{ dB} = 20 \log \frac{\text{Saturation level}}{\text{Noise level}} \rightarrow$$

$$\text{Saturation level} = 10^{\frac{100}{20}} \times \text{Noise level}$$

$$\text{Saturation level} = 480'000 e^-$$

Exercise 1: Dynamic Range

- For this saturation level, what should be the **bit depth** of our **ADC**?

$$\log_2 480'000 = 18.872$$

so we will need a 19-bit ADC.

- For this saturation value, we are going to have to design a **collector capacitor** of:

$$Voltage = \frac{Saturation\ level \times electron\ charge}{C} \rightarrow$$

$$C = \frac{4.8 \cdot 10^5 \times 1.6 \cdot 10^{-19} \text{ C}}{1 \text{ V}} = 7.68 \cdot 10^{-14} = 76.8 \text{ fF}$$